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Abstract. We study the effect of quantum fluctuations in an Ising spin system on a scale-free network of
degree exponent γ > 5 using a quantum Monte Carlo simulation technique. In our model, one can adjust
the magnitude of the magnetic field perpendicular to the Ising spin direction and can therefore control the
strength of quantum fluctuations for each spin. Our numerical analysis shows that quantum fluctuations
reduce the transition temperature Tc of the ferromagnetic-paramagnetic phase transition. However, the
phase transition belongs to the same mean-field type universality class both with and without the quantum
fluctuations. We also study the role of hubs by turning on the quantum fluctuations exclusively at the nodes
with the most links. When only a small number of hub spins fluctuate quantum mechanically, Tc decreases
with increasing magnetic field until it saturates at high fields. This effect becomes stronger as the number
of hub spins increases. In contrast, quantum fluctuations at the same number of “non-hub” spins do not
affect Tc. This implies that the hubs play an important role in maintaining order in the whole network.

PACS. 64.60.Cn Order-disorder transformations; statistical mechanics of model systems – 64.60.Fr Equi-
librium properties near critical points, critical exponents – 89.75.Hc Networks and genealogical trees

1 Introduction

In recent years, there has been a rapidly growing interest
in the study of complex networks. When appropriately
simplified, a great number of both natural and man-made
systems can be understood in terms of a large array of
objects interacting with one another in a complicated net-
work-like manner. To name just a few examples, the Inter-
net [1], the World-Wide Web [2,3], collaboration networks
[4], citation networks [5], protein interaction [6], food-webs
[7,8], and metabolic networks [9] are known to be well de-
scribed using theories based on complex networks.

Of the most-studied complex networks, scale-free (SF)
networks in particular are known to describe a variety of
systems in the real world and to possess many peculiar and
interesting properties. A node in a SF network is charac-
terized by the degree k, the number of links attached to
it. The defining characteristic of a SF network is the de-
gree distribution P (k) that has a power-law decay for a
large k, i.e.,

P (k) ∼ k−γ . (1)

Here γ is an important parameter of the SF network and
is called the degree exponent (which is to be distinguished
from the susceptibility critical exponent γ̄ in this paper).
The above form of the degree distribution implies that a
few nodes have a very large number of links compared
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to the average degree of the network. When the nodes
interact with one another through links, these “hubs” play
an important role by influencing a large number of nodes
and by enabling communication between them.

Cooperative phenomena in the SF networks have also
been studied recently in many contexts, such as the
spreading of epidemics [10], percolation [11], and the Ising
model [12–15]. These models have all been shown to dis-
play unique characteristics due to the peculiar topology of
SF networks. For example, a ferromagnetic Ising system,
when placed on a SF network, is known to exhibit an ex-
traordinary ferromagnetic-paramagnetic phase transition.
The transition belongs to the simple mean-field univer-
sality class when γ > 5. However, the critical exponents
for 3 < γ ≤ 5 are nonuniversal and depend on the value
of γ, though they are independent of the details of the
model used. If γ ≤ 3, the system remains ordered in the
ferromagnetic phase at all temperatures.

Although most of the work in complex networks
has focused on classical dynamics, quantum mechanical
problems in complex networks such as the localization-
delocalization transitions of electronic states [16,17], the
ferromagnetic-paramagnetic phase transition in an Ising
model [18], and quantum gauge theory [19], have also been
subjects of recent studies. Another motivation for study-
ing quantum effects on complex networks is furnished by
the recent development of broad interest in quantum com-
puting and information processing. For example, an array

http://dx.doi.org/10.1140/epjb/e2008-00033-1
http://www.epj.org


90 The European Physical Journal B

of quantum mechanical spins in a network may form quan-
tum bits(qubits) and the quantum information in them
is usually processed and transmitted via interactions be-
tween them. Although our model in this work may not
directly represent a real quantum computer, it may pro-
vide an insight into how the topology of the underlying
network affects the behaviour of the qubits.

The main topic of this work — quantum fluctuations
in SF networks — has drawn our attention for several rea-
sons. Firstly, the SF nature of the networks is known to
enhance correlations between Ising spins. Quantum fluc-
tuations, on the other hand, tend to destroy correlations.
In fact, a recent study on small-world networks — an-
other widely studied class of complex networks — has
shown that strong quantum fluctuations indeed destroy
ferromagnetic order even at zero temperature [18]. There-
fore, it would be interesting to find out how competition
between the two affects the behaviour of the system. Sec-
ondly, in a SF network, the hub spins are very important
because they affect many other spins and mediate infor-
mation between them. The role of the hubs may be stud-
ied more closely if one can control their effectiveness. One
may achieve this by applying quantum fluctuations exclu-
sively at the hubs. Thirdly, whether quantum fluctuations
change the universality class of the phase transition is an
intriguing scientific question in itself. In the case of a fer-
romagnetic Ising system on a small-world network [18], it
was found that quantum fluctuations do not alter the uni-
versality class. It may be interesting to see whether it is
the case in SF networks, too. In order to focus on the ef-
fect of quantum fluctuations on the phase transitions and
the universality class to which they belong, we will restrict
the analysis in this paper the simple case of γ > 5, where
the model belongs to the well-known mean-field universal-
ity class.

2 Model and simulation method

The model we consider is a system of N spins with Ising
interactions. Unlike most Ising models in which spins form
a lattice, however, each spin is placed on a node of a SF
network. A pair of spins interact with each other if and
only if there is a link between the nodes they are on. In
order to investigate the effect of quantum fluctuations, we
also apply a magnetic field in a direction perpendicular to
the Ising spin direction.

The model Hamiltonian is given by

H = −
∑

i<j

Jijσ
z
i σz

j −
N∑

i=1

∆iσ
x
i , (2)

where σα
i (α = x, y, z) are the Pauli matrices represent-

ing the spin at the ith node. The ferromagnetic coupling
between the spins at nodes i and j is determined by Jij .
The parameter ∆i is the magnitude of the magnetic field
at node i in the x-direction. (We use normalized units such
that the Bohr magneton µB = 1.) Note that the Ising spin
direction is chosen to be the z-direction and the magnetic

field ∆i is applied perpendicular to the Ising spin direc-
tion. This transverse field term thus causes quantum fluc-
tuations, as it does not commute with the first Ising spin
interaction term of the Hamiltonian. The strength of the
quantum fluctuations at each individual spin is therefore
tuneable through ∆i.

In this work, we consider a simple ferromagnetic case
where

Jij =
{

J > 0, if there is a link between i and j,
0, otherwise, (3)

i.e., the coupling is a nonzero constant if and only if the
two nodes are linked in the network. Note that if Jij is
allowed to take different values from link to link, the sys-
tem would become a spin glass, which we will not discuss
here. For the transverse field ∆i, we will consider only two
simple cases: (a) a uniform field over the whole network
and (b) a uniform field over a certain set of nodes and
no field for the rest. Case (a) will be analyzed first in the
next section, and then case (b) will be considered later in
Section 4 when we discuss the special role played by hubs.

In order to generate random SF networks, we have used
the static model [20]. We have checked that no two nodes
have more than one link between them, no link connects a
node to itself, and the whole network is connected as one
single cluster. Once a spin has been placed on every node
of the network, we have performed quantum Monte Carlo
simulations [21] using the Trotter production formula,
which is obtained through the standard Euclidean path in-
tegral method with imaginary time τ(≡ it) [22]. The whole
range of imaginary time 0 ≤ τ ≤ β (β ≡ 1/kBT ) is divided
into M slices of equal size ∆τ = β/M . Then the complete-
ness relation

∏
i

∑
Si=±1 |Si〉 〈Si| = 1 is inserted between

neighboring slices, where |Si〉 is an eigenstate of σz
i with

the ith spin pointing up (Si = +1) or down (Si = −1).
In order to choose the right number of slices M , we have
computed physical quantities with different values of M
for each given parameter set. It turns out that there is a
lower limit Mc above which the result becomes indepen-
dent of M . This indicates that ξτ , the correlation length
in the imaginary time direction, is a finite fraction of β.
Typically, Mc ∼ 30, but it becomes larger for very low
temperatures. More details on the method used here may
be found in reference [18]. We have employed the cluster
algorithm [23] for efficiency. All results were obtained af-
ter averaging over a large number of randomly generated
static SF networks until a desired statistical precision was
achieved.

3 Quantum fluctuations in the whole network

We first analyze the case where a uniform transverse mag-
netic field is applied to the whole network, i.e.,

∆i = ∆ for all i. (4)

For simplicity, we have also restricted the analysis to
γ = 6. It is known that for γ > 5, the ferromagnetic
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Fig. 1. (a) The fourth order Binder cumulant UN is drawn as
a function of temperature for five different system sizes N . The
parameters used are γ = 6, ∆/J = 10, and M = 50. Error bars
are omitted, but they are about the same size as the symbols.
For large N , the curves cross at a single point, which is identi-
fied as the ferromagnetic-paramagnetic phase transition tem-
perature Tc. In this particular data set, kBTc/J = 6.2±0.2. (b)
Transition temperature relative to the Ising coupling strength
kBTc/J is drawn as a function of transverse field strength
∆ for SF networks with γ = 6. From extrapolation, it ap-
pears to vanish at ∆c/J � 12. The system is in the ferromag-
netic(paramagnetic) phase below (above) the curve.

Ising model in the absence of the quantum fluctuations
will exhibit critical behaviour which belongs to the mean-
field universality class [12–14]. In fact, our model reverts
to the classical one if ∆ = 0 and this reversion has been
used to test our Monte Carlo simulation method. All re-
sults of the zero-field classical case agree well with the
predictions of the earlier studies.

We have determined the transition temperature as a
function of transverse field, Tc(∆), from the finite-size
scaling method. For a given ∆, we have varied the tem-
perature T and computed the fourth order Binder cumu-
lant [24] of the magnetization m

UN (T ) = 1 − [〈m4〉]
3[〈m2〉]2 (5)

for several systems with different numbers of spins N .
Here, two different brackets 〈· · · 〉 and [· · · ] are used to
denote the thermal and the network configuration aver-
age, respectively. Then, Tc is determined from the crossing

point of the graphs UN (T ). An example of such a graph
at ∆/J = 10 is shown in Figure 1a.

By repeating the above analysis with varying ∆/J , one
can determine Tc as a function of ∆/J . The result is plot-
ted in Figure 1b. The figure can also be interpreted as
a phase diagram, since the system is in the ferromagnetic
(paramagnetic) phase below (above) the curve in the ther-
modynamic limit. Note that the transition temperature Tc

decreases as ∆ increases, which implies that quantum fluc-
tuations weaken ferromagnetic order. It appears that Tc

eventually vanishes at a quantum critical point ∆c/J � 12
[25]. In our Monte Carlo simulation method, however,
the exact value of this critical field ∆c may only be es-
timated from the extrapolation of the Tc(∆) curve, since
the method fails at exactly zero temperature (β → ∞)
where an infinite number of imaginary time slices would
be required. In our analysis, we were able to approach
this quantum critical point down to kBTc/J = 0.1 ± 0.3
at ∆/J = 12, but no further, due to the above men-
tioned limitations of the method used. The quantum crit-
ical point is in itself an intriguing subject, but it will not
be discussed further in this paper.

We now turn to the calculation of the critical expo-
nents which identify the universality class of the phase
transitions. By comparing the mean-field critical expo-
nents of the purely classical case with those of the transi-
tions at finite transverse fields, we can tell whether quan-
tum fluctuations alter the universality class or not. First,
the critical exponent ν̄, which describes the divergence of
the correlation volume at Tc [26], can be extracted from
the finite-size scaling formula of the Binder cumulant

UN (T, N) = Ũ((T − Tc)N1/ν̄). (6)

Near Tc, the above expression may be expanded as

UN (T, N) = U∗ + U1

(
1 − T

Tc

)
N1/ν̄ , (7)

where U∗ and U1 are constants. We thus get the relation

∆UN ≡ UN (T1, N) − UN (T2, N) ∝ N1/ν̄ , (8)

where T1 and T2 are close to Tc. This relation can be used
to obtain ν̄ from the data. The other critical exponents are
then obtained from the specific heat c, magnetization m,
and susceptibility χ using the following finite-size scaling
formulas:

c(T, N) = Nα/ν̄ c̃((T − Tc)N1/ν̄) (9)

m(T, N) = N−β/ν̄m̃((T − Tc)N1/ν̄) (10)

χ(T, N) = N γ̄/ν̄χ̃((T − Tc)N1/ν̄). (11)

An example of the result from the finite-size scaling anal-
ysis at ∆/J = 10 is shown in Figure 2. For each physical
quantity, the curves which represent different system sizes
clearly collapse to one single curve near Tc. For all values
of ∆/J that appear in Figure 1b, we have confirmed that
the critical exponents are: ν̄ = 2.0 ± 0.1, α = 0.0 ± 0.1,
β = 0.5 ± 0.1, and γ̄ = 1.0 ± 0.1. Within the error bars,
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Fig. 2. Universal scaling functions for (a) specific heat, (b)
magnetization, and (c) susceptibility. These data sets are for
γ = 6, ∆/J = 10, kBTc/J = 6.2, and M = 50. We used the
mean-field critical exponents ν̄ = 2, α = 0, β = 1/2, and γ̄ = 1
here. The legend in (a) is common to all three figures. Near
T = Tc, all data appear to collapse to one single curve for each
physical quantity.

they are the same as the mean-field critical exponents:
ν̄ = 2, α = 0, β = 1/2, and γ̄ = 1. Therefore, we may con-
clude that the quantum fluctuations induced by a uniform
transverse magnetic field does not change the universality
class of the ferromagnetic-paramagnetic phase transition.

The above results are very similar to those obtained in
the case of small-world networks [18]. This may be because
the two problems belong to the same mean-field univer-
sality class when γ > 5. However, the two models are also
very different in many ways even for γ > 5. One such dif-
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Fig. 3. Curves of the ferromagnetic-paramagnetic phase tran-
sition temperature Tc,qh(∆) of the “quantum-hub model”. The
transverse magnetic field ∆ is applied exclusively at N ′ hub
nodes. The horizontal axis is drawn in logscale. The result of
the original uniform-field model (N ′/N = 1) is also drawn for
comparison. At large ∆, the results for N ′/N = 0.1 and 0.2
appear to saturate at 7.2 and 5.4, respectively, which are the
results for the classical “removed-hub model” and are drawn
in the figure as horizontal dashed lines.

ference is that there are hubs in scale-free networks that
play very important roles in mediating the exchange of or-
dering information between nodes. The roles of the hubs
are the subject of the following section.

4 Quantum fluctuations only at hub nodes

In this section, we will investigate whether and how the
influence of hub spins to the whole system is weakened
by quantum fluctuations. The transverse magnetic field is
now turned on only at a small number N ′ of nodes that
have more links than the others.

∆i =
{

∆, i is a hub node,
0, otherwise. (12)

We have performed the Monte Carlo simulation with var-
ious different fractions N ′/N . Sample results for N ′/N =
0.1 and 0.2 are shown in Figure 3. At ∆ = 0, the model
is again purely classical and the curves for different N ′
all converge to the classical result. As ∆ grows, the tran-
sition temperature Tc,qh(∆) decreases, but saturates at a
finite value Tc,qh(∞) at large ∆. (The letters ‘qh’ in the
subscript is short-hand notation for ‘quantum hubs’.) As
the number of hubs N ′ increases, the saturation tempera-
ture Tc,qh(∞) decreases. Eventually at N ′ = N , the model
becomes identical to the model discussed in the previous
section where the transverse field is applied to the entire
system.

For the purpose of comparison, we have also performed
a similar analysis by turning on the transverse field only
at the N ′ nodes that have the fewest links. For the same
fractions N ′/N = 0.1 and 0.2, it was not possible to detect
any change in Tc even at a transverse field as large as
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1000J . Therefore it is evident that the above behaviour of
decreasing Tc,qh(∆) is due to the fact that the quantum
fluctuations are applied to the spins at the hubs. We may
thus conclude that the hub spins play an important role
in maintaining ferromagnetic order in the whole system,
and that Tc,qh(∆) decreases with ∆ because the quantum
fluctuations lessen the effect of hub spins.

The saturation of Tc,qh(∆) at large ∆ may be easily
understood if we compare the current model with another
one: a completely classical system (∆ = 0) with the hub
nodes simply removed from the network. It turns out that
the transition temperature Tc,rh for the new model (sub-
script ‘rh’ for ‘removed hubs’) is the same as the satura-
tion value Tc,qh(∞) of the above quantum hub model. The
reason for this is quite simple: at strong transverse field
∆, quantum fluctuations completely wipe out the average
z-direction component of the hub spins so that they can
neither affect other spins nor contribute to magnetization.

An analysis of critical behaviour similar to the one in
the previous section again shows that selectively turning
on quantum fluctuations for hub spins does not alter the
universality class of the phase transition.

Before concluding, we would like to make a few brief
comments about the influence of quantum fluctuations for
networks with γ < 5. It is well-known that as γ decreases
the role of hubs become more important, and that the
critical exponents take different values for γ < 5, which
means that the problem belongs to a different universality
class than that of the simple mean-field. However, sim-
ply applying a uniform magnetic field to the whole sys-
tem would probably not alter the universality class of the
problem even for the case γ < 5. Of course, this hypothe-
sis must actually be tested before making any conclusive
statements, because so far only mean-field cases have been
studied in connection to quantum fluctuations. It will be
also interesting to see how a local magnetic field on the
hubs will affect the system when γ < 5 and the role of
hubs is enhanced.

5 Conclusions

We have performed a quantum Monte Carlo simulation
analysis of a ferromagnetic Ising spin system connected
through a SF network. We have considered a model in
which one can control quantum fluctuations of each in-
dividual spin by adjusting a transverse magnetic field at
each node. When there is a uniform transverse field ∆
over the whole system, the ferromagnetic-paramagnetic
phase transition occurs at temperature Tc(∆) which de-
creases with growing ∆ and finally vanishes at a finite ∆c.
The computed critical exponents for γ > 5 indicate that
the model remains in the simple mean-field universality
class even in the presence of a transverse field. We have
also performed a similar analysis by turning on the trans-
verse field at only a small number of hubs, i.e., nodes that
have more links than the others. The transition tempera-
ture Tc,qh(∆) decreases with growing ∆, but saturates at
a finite temperature Tc,qh(∞). This saturation transition
temperature has been found to be the same as the transi-
tion temperature of another model in which the hub nodes

are simply removed from the network. In contrast, if we
turn on the transverse field at the same number of nodes
but at those which have the fewest links, the transition
temperature is not affected by the quantum fluctuations.
We have attributed this result to the special role played
by the hub spins in maintaining ferromagnetic order in the
whole system. Again, applying the transverse field selec-
tively on the hub spins does not change the universality
class of the phase transition.

The author benefited from valuable discussions with M.-S.
Choi and H. Jeong. This work was supported by the Soongsil
University Research Fund.
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